Bihar Mathematical Society

Talent Nature Programme (TNP) 2021 (Level III)

Full Marks:- 100

Answer all questions. All questions carry equal marks.

- 1. Continuity is necessary but not a sufficient condition for the existence of finite derivative.
- 2. Evaluate the line integral $\oint_C (y dx + z dy + x dz)$, where C is the curve of intersection of the

sphere $x^2 + y^2 + z^2 = a^2$ and the plane x + z = a.

- 3. If a sequence $\{a_n\}$ is convergent, then it converges to a unique limit.
- 4. Evaluate $\iint_{S} \overrightarrow{F} \cdot \overrightarrow{dS}$, where $\overrightarrow{F} = 4x \hat{i} 2y^2 \hat{j} + z^2 \hat{k}$ and S is the surface bounding the

region $x^2 + y^2 = 4$, z = 0 and z = 3.

5. Let $\{a_n\}$ and $\{b_n\}$ be two convergent sequences such that $\lim_{n\to\infty} a_n = a$ and

 $\lim_{n\to\infty} b_n = b$. Then $\lim_{n\to\infty} \left(\frac{a_n}{b_n}\right) = \frac{a}{b}$, provided $b \neq 0$ and $b_n \neq 0$ for any n.

6. Suppose that a function f is analytic inside and on a positively oriented circle C_R , centered at z_0 and with radius R. If M_R denotes maximum value of /f(z) on C_R , then

$$\left| f^{n}(z_{0}) \right| \leq \frac{n! M_{R}}{R^{n}} \quad (n = 1, 2, 3, ...)$$

Time: $2\frac{1}{2}$ Hours

- 7. For the Taylor's polynomial approximation of degree $\le n$ about the point x=0 for the function $f(x) = e^x$. Determine the value of *n* such that the error satisfies $|R_n| \le 0.005$ when $-1 \le x \le 1$.
- 8. Show that the function $f(z) = \sqrt{|xy|}$ is analytic at the origin, although the Cauchy Riemann equations are satisfied at that point.
- 9. Let R be a ring with unit element $e \in R$. Then the ring R, when considering as a right R-module is isomorphic to ring $Hom_R(M, M)$.
- 10. Hom_F (V, U) $\simeq F^{m \times n}$ as a vector space over *F*.