Bihar Mathematical Society

Talent Nature Programme (TNP) 2021 (Level III)

Answer all questions. All questions carry equal marks.

1. Continuity is necessary but not a sufficient condition for the existence of finite derivative.
2. Evaluate the line integral $\oint_{\mathrm{C}}(y d x+z d y+x d z)$, where C is the curve of intersection of the sphere $x^{2}+y^{2}+z^{2}=a^{2}$ and the plane $x+z=a$.
3. If a sequence $\left\{a_{n}\right\}$ is convergent, then it converges to a unique limit.
4. Evaluate $\iint_{\mathrm{S}} \overrightarrow{\mathrm{F}} \cdot \overrightarrow{d \mathrm{~S}}$, where $\overrightarrow{\mathrm{F}}=4 x \hat{i}-2 y^{2} \hat{j}+z^{2} \hat{k}$ and S is the surface bounding the region $x^{2}+y^{2}=4, z=0$ and $z=3$.
5. Let $\left\{a_{n}\right\}$ and $\left\{b_{n}\right\}$ be two convergent sequences such that $\lim _{n \rightarrow \infty} a_{n}=a$ and $\lim _{n \rightarrow \infty} b_{n}=b$. Then $\lim _{n \rightarrow \infty}\left(\frac{a_{n}}{b_{n}}\right)=\frac{a}{b}$, provided $b \neq 0$ and $b_{n} \neq 0$ for any n.
6. Suppose that a function f is analytic inside and on a positively oriented circle C_{R}, centered at z_{0} and with radius R. If M_{R} denotes maximum value of $|f(z)|$ on C_{R}, then

$$
\left|f^{n}\left(z_{0}\right)\right| \leq \frac{n!\mathrm{M}_{\mathrm{R}}}{\mathrm{R}^{n}} \quad(n=1,2,3, \ldots)
$$

7. For the Taylor's polynomial approximation of degree $\leq n$ about the point $x=0$ for the function $f(x)=e^{x}$. Determine the value of n such that the error satisfies $\left|R_{n}\right| \leq 0.005$ when $-1 \leq x \leq 1$.
8. Show that the function $f(z)=\sqrt{|x y|}$ is analytic at the origin, although the Cauchy Riemann equations are satisfied at that point.
9. Let R be a ring with unit elemente $\in \mathrm{R}$. Then the ring R , when considering as a right R -module is isomorphic to ring $\operatorname{Hom}_{\mathrm{R}}(M, M)$.
10. $\operatorname{Hom}_{F}(\mathrm{~V}, \mathrm{U}) \simeq F^{m \times n}$ as a vector space over F.
